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Material and geometry effects on crack 
shape in double torsion testing 

P. S. LEEVERS, J. G. W I L L I A M S  
Department of Mechanical Engineering, Imperial College of Science & Technology, 
London SW7 2BX, UK 

Previous work has established a model for expressing the curved crack front shape 
observed in a Double Torsion test in a single parameter, the shape factor S. This paper 
demonstrates the ability of this model to account for crack shape effects on measured 
toughness against crack speed data, using a direct measurement of S, in tests on poly- 
methyl methyacrylate (PMMA) of various molecular weights. The analysis is then 
extended to enable S to be predicted without reference to the material crack front size 
parameter referred to in earlier work: only specimen geometry significantly influences 
the crack front shape in a wide variety of materials. 

1. I n t roduct ion  
A typical problem in basic Fracture Mechanics 
research is the evaluation of crack resistance as a 
function R(~) of crack speed, whose influence can 
reveal the nature of separation processes in the 
material [1] or of transport mechanisms in its 
environment [2]. R is the work, W, absorbed at 
a locally-straight section 6~? of advancing crack 
front: 

1 d(~_') 
R = ( 1 )  

being a coordinate fixed in the crack plane and 
directed normally to 7. Several test methods can 
provide an observable image of R(~) as Gc(d), 
where d is the crack velocity in a specific direction, 
measured directly o r - f o r  an elastic b o d y -  
calculated as 

d Pc(dC/da) + C(dPc/d ) (2) 

Here load, Pc, and load-point displacement, v, are 
observed during crack extension; the crack path 
width, Bc, is measured; and compliance, C = V/Pc, 
and strain energy release rate 

ac  = ~ c  (3) 

are calculated. 

In the Tapered Double Cantilever Beam (TDCB) 
specimen, the crack front is quite straight, ~ ~ d ,  
as observed along a surface, and little distortion of 
the R ( ~ ) ~  Go(d) mapping is to be expected. Its 
use, however, may be complicated by crack 
wandering, or breakage or yield of the arms near 
the loading points; furthermore, the contouring 
process itself can prove expensive. The Double 
Torsion (DT) test (Fig. 1), by contrast, seems 
extremely simple, using a rectangular plate, and 
is generally less sensitive to crack wandering. The 
complexities here, however, are interpretative, 
and arise from the markedly curved crack front. 

The DT compliance function C(a) can be 
measured directly, or estimated by elastic 
analysis - assuming simple torsion over the 
separated length, a, of each rectangular-section 
arm, and an unchanging torsional compliance at 
its root. Hence 

dC (1 + v) D 2 
da - ~ ZHB 3 (4) 

where geometric parameters are defined in Fig. 1, 
Z is a tabulated function of (B/H), and E and u 
are the elastic modulus and Poisson's ratio. The 
established accuracy of Equation 4 validates these 
assumptions about the outer deformation field, 
which imply that the separated crack surfaces are 
split apart on one specimen face and forced 
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bTgure 1 The Double Torsion test. 

together on the other, " touching" only at a unique 
neutral axis, NA. 

To resolve this physically implausible picture, 
further assumptions must be made: 

(i) The advancing crack front follows a contour  
of  constant face separation as extrapolated inwards 
from this assumed deformation field, and, simul- 
taneously, 

(ii) in-plane beam flexure takes place so that 
the NA shifts to a position midway across the still- 
unseparated width of the crack path. 

This deformation model is complete, and proves 
[3, 4] to provide an accurate prediction of the 
crack front shape: 

where x = b is the uncracked path width (the 
ligament) at y * - ( a - - y ) / B  c. This shape, which 
translates with a, and can be recorded instan- 
taneously on the exposed surface (e.g. by sudden 
arrest, or a discontinuity in crack velocity), is 
uniquely characterized by its dimensionless shape 

factor, S, measurable via a simple geometric 
construction (Fig. 2). In terms of  the assumed 
deformation field, SB c is the distance beyond 
y = a at which the torsion beam twist extrapolates 
to zero. It can also be shown that, according to 

E=QP I 

Figure 2 Calculated DT crack shaPes for a typical range of 
observed shape factors, S. 
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Figure 3 Predicted crack length and shape effects on DT 
test toughness results, for a power-law rate-dependent 
material (n = 0.1). 

Equation 5 and assumption (ii), the beam f lexure 

extrapolates linearly to zero at the crack tip, 
implying a local, concentrated couple there, and 
no net crack plane surface tractions elsewhere. 

Crack front curvature re-emphasizes the 
distinction between crack speed and velocity, and 
thus between R(~),  a postulated material property, 
and Gc(d), its observable image, averaged from R 
along the front. Using the DT crack shape model, 
this can be made explicit [3]: 

Gc(~) = ~s('l~s+o/BO R [~x*=/(S 2 + x*4)-~l dx* (6) 
For many materials, R(~) approximates to an 
exponential form 

R = R l ~  n (7) 

with R1 a constant; e.g. for PMMA in air, n ~ 0.1 
for crack speeds of  some gmsec  -a to some 
mm sec -1 [5]. Then, Equation 6 becomes 

Gc(d ) _ _j-1 x*2 n 
R(~) -sl(s+o/BO (S 2 + x*4) "j2 dx* (8) 

Integrating the dummy variable out of  
Equation 8 for n = 0.1 (Fig. 3) suggests that: 
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(a) a pronounced (for high S) crack length 
effect is caused by the increasing proportion of 
available path width, B c, within which the crack 
front is actually propagating (a thin ligament of 
material may still hold the specimen together even 
after fracture), and 

(b) even for long cracks, gross errors in esti- 
mating R from G may be made if the disparity 
between front speed and translation velocity is 
not accounted for. 

The objects of the work described here were 
twofold. Firstly (Section 2), we aim to demon- 
strate that DT tests actually induce these expected 
disparities between G and R, and that they can be 
corrected for using a measured value of the shape 
factor, S. Secondly, our understanding of the 
factors controlling crack shape is tested by 
attempting to predict S for a particular test. Some 
further analysis of .the beam root deformation 
system allows S to be expressed as a function of 
geometry, and this is evaluated using data from a 
range of different materials. 

2. Crack shape effects on Gc against d data 
Fig. 3 predicts that S will have a pronounced effect 
on G e against d data for PMMA (n ~ 0.1), and 
Stalder and Kausch [4] have already demonstrated 
the influence of plate thickness and sidegroove 
depth on S (or, in their notation, MF1). Adopting, 
in a modified form, the experimental techniques 
of Stadler and Kausch, we tested larger ( 2 H =  
90mm) DT specimens of ICI Perspex PMMA, 
under a range of controlled crosshead rates on a 
100 kN Instron machine - to yield crack translation 
velocities spanning more than a decade around 
1 mmsec -1. Crack length was recorded on the 
load-displacement trace to provide an individual 
compliance calibration, C(a), for each test. While 
the crack was propagating steadily near the half- 
width point ( a >  10Be) , the crosshead was sud- 
denly driven into fast reverse 0) = l mmin -1) 
to unload the specimen, which was then inverted 
and fractured at the same rate. The exposed sur- 
face, a crack front arrest line clearly marked on it 
as a boundary between distinct textures, was then 
metallized and photographed to x 12 magnifi- 
cation, and S was calculated from two measure- 
ments (Fig. 2) as 

3 h  
S - (9) 

2Be 

Whilst the in-plane specimen size was held 

constant (90mm x 180mm), thickness and side- 
groove depth were varied: 6 mm thick specimens 
were grooved to 1.5 mm depth (as for earlier tests 
on polyesters [3]) or left ungrooved, 10mm thick 
specimens grooved to 1, 1.5, 2, 2.5, 3 and 3.5 mm 
depth. I ronical ly-  crack path stabilization being 
the main purpose of DT specimen sidegrooving- 
only tests on the latter, deepest-grooved geometry 
were aborted due to crack wandering. With insuf- 
ficient rigidity in the uncracked section to react 
against torsional end loading, these specimens 
behaved like elongated four-point bend types, the 
crack tearing raggedly and discontinuously up from 
several initiation points on the tension surface. 
Cracks in ungrooved specimens merely curved 
gently from the centreline, suffering no change in 
section thickness and showing only a slight depar- 
ture from linearity in C(a). 

The expected crack-length effect on apparent 
toughness (Fig. 3) emerges most clearly in deeply- 
grooved 10 mm specimens; the rising load traversed 
a broad maximum as the support compliance of 
the ligament rose. Plotting Ge(a ) data as calcu- 
lated from Equations 2 and 3 for each specimen 
shows (Fig. 4) scatter of about -+ 25%, but there is 
a systematic tendency for more deeply grooved 
specimens to yield lower apparent toughness 
values. If this arises from crack shape effects, the 
most accurate data should originate from un- 
grooved 6ram and 1 mm grooved 10ram speci- 
mens. These do indeed constitute an upper bound, 
and regression analysis on the form of Equation 8 
yields n = 0.08 and 0.11, respectively, in good 
agreement with earlier results [ 1 ]. 

Correcting each result from Equation 8, using 
n = 0.1, achieves a dramatic reduction in scatter 
(Fig. 5): +-5% limits provide a 90% confidence 
band around a characteristic with n = 0.1 and 
R(~ = 1 mm sec -1) = 465 J m -2. Although no 
systematic variation in R with sidegroove depth 
is now discernible, 6ram thick material still 
appears to be tougher than 10ram material, at 
low crack speeds, and this may well be a genuine 
effect. To provide further evidence that this 
correction procedure reveals a material property 
characteristic, a second series of tests was carried 
out, using 6 mm "Perspex" specimens, of number- 
average molecular weight 34 n = 350k, 7-irradiated 
to reduce this to various values down to 20k. 
Crack resistance is thereby reduced, while leaving 
elastic constants unchanged [6]. Supplementary 
TDCB tests provided reference data at four values 
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Figure 4 Measured critical strain energy 
release rate against crack velocity, for 
PMMA ()14 n = 345 000) in a range of  DT 
specimen geometries. 

o f M  n. Although the crack front in these specimens 
is essentially straight and orthogonal to the trans- 
lation direction in the fracture plane, requiring no 
correction for velocity, it tended to tilt and bow 
out of plane, sometimes leaving a convoluted 
surface. This effect, which is not significant in DT 
tests, extends the crack front, and requires a 
correction to Be: of  up to 10%, measured from 
Shadowgraph traces, at x 50 magnification, of  
transverse sections of  the crack path. 

For each material and geometry, 5 to 10 tests 
over a range of crosshead speeds allowed Ge 

( d =  l mmsec  -1) to be accurately and reliably 
interpolated. For DT data, this interpolation stage 
was repeated, using the procedure established here 
to calculate R (~ = 1 mm sec-1). Fig. 6 shows that 
this brings close agreement with the Ge(d) = R(~) 
data from TDCB t e s t s - co r r ec t ing  an original 
under-estimate of up to 4 0 % -  and demonstrates 
the usefulness of  the method in pursuit of a par- 
ticular goal. The irradiated materials show a tough- 
ness plateau to extend down to/14 n = 40k, with a 
precipitous fall below this value; a possible expla- 
nation has been discussed elsewhere [6]. 
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Figure 5 Corrected crack resist- 
ance against crack speed charac- 
teristic for PMMA, from data of 
Fig. 4. 
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Figure 6 Measured (Ge) and corrected (R) crack resis- 
tance, from DT tests on PMMA of various molecular 
weights at a crack speed of 1 mm sec -1. 

3. Geometry effects on crack shape 
It has now been demonstrated that Equation 5 
describes the DT crack shape very well [3], that 
this permits a one-parameter description by S, and 
that, using a measurement of S and a calculation 
scheme based on it, a rate-dependent material 
property function, R(~), can be distilled from its 
distorted experimental image, Go(d). For practical 

purposes, it is obviously desirable to be able to 
predict S for a particular test, or at least to under- 
stand the influence of  geometrical and material 
property parameters on it, so that shape factor 
effects can be minimised by design. 

To assess the effect of material properties, 
further DT tests were carried out on materials 
ranging from polycrystalline alumina, with a 
vanishingly small crack tip opening displacement 
(COD), to a titanium alloy with a COD of over 
1 0 0 g m - f i f t y  times that of  PMMA. Thickness 
and sidegroove depth were varied where possible, 
but constraints on material availability did not 
allow any particular geometry to be used for 
every material. Nevertheless, a striking consistency 
in crack shape across this broad spectrum of 
properties was observed, as illustrated in Fig. 7 
by the front shapes in specimens, having an almost 
identical geometry ( 6 m m  thick, ungrooved), of  
glass and of  Perspex. In both cases, S = 0.615, 
and the shapes conform very closely indeed to 
Equation 5. This evidence strongly suggests that 
8f, the postulated constant crack front size, arises 
only as a component of  the outer, elastic dis- 
placement field, rather than as any characteristic 
size of  the process zone. This can be established 
by developing an analysis for geometry effects 
only, and testing its applicability to all the 
materials tested. 

3.1. Further analysis of the deformation 
system 

Torsion in each rectangular beam is governed by 

Figure 7 Almost identical crack 
shapes (S = 0.61) in glass (above) 
and PMMA (below) DT speci- 
mens of similar geometry. 
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the equation 

E viZHB3 dO M - 2(1 + ~yy (10) 

where M is the local transmitted moment, and 0 
is the rotation, in the direction of the applied 
moment at y = 0. Since the torsion (dO/@) is 
assumed not to decay significantly up to the 
beam root y = a, the entire deformation pattern 
is fixed by the rotation and torsion at that point. 
Now S is defined by the extrapolation of the 
rotation to zero a ty  = a + SB~ [3]: 

dO 
O(a) = SB c -~y (a) (11) 

so that it is independent of the crack front size 
8f, so long as this remains constant over y < a .  
In fact, the rotation will not fall linearly to zero 
within a < y < a + SBe, since the transmitted 
moment decays with y, extending the length of 
moment-supporting structure: this is made obvious 
in practice by the appearance of finite length 
effects at a ~ (L - SBr A simple "beam on 
elastic foundation" analysis of the support struc- 
ture can therefore be used to relate rotation and 
torsion at the beam root, and thus to predict S. 

Because SB~, characterizing the support defor- 
mation region size, is normally much smaller than 
H, it can be assumed that rigid-section beam 
torsion continues to dominate any cross-sectional 
bending. Deformations are therefore localized as 
displacements normal to the unseparated crack 
plane surfaces, and are (assuming a mid-plane NA): 

w(x)  = ( x - - ~ ) O  (12) 

corresponding to normal tensile tractions p(x). 
The magnitude of these tractions can be estimated 
by matching the peak displacement w(B~) to that 
at the surface of a semi-infinite elastic plane sub- 
jected to a similar array (p(x),  0 < x  < b), which 
is ([51, p. 109): 

w(b) = -- 2_.2_fb p(x) l n ( b - - x )  dx (13) 
7rE x = 0  

To apply this result to the crack face problem, we 
note that, for equilibrium, 

; c  p(x)  = 0 (14) 

and incorporate a factor c to account for the 

increased compliance of a finite crack path width. 
Integrating Equation 13 by parts then yields: 

2c yBo c yp(x) ax w(Be) - - ~ -  ~ ( b - - x )  dx (15) 

Assuming a linear traction distribution 

p(x)  = Pmax(2x--Be)/Be (16) 

yields, from (12) and (15): 

7rE 
P m a x  - -  0 (17) 

2c 

Since such a distribution exerts a moment per 
unit length 

_ 1 2 ( 1 8 )  m = ~ P m a x B e  

we arrive at an expression for the decay in applied 
moment due to absorption by the support: 

dM _ rrEBZe 0 (19) 
dy 12e 

Differentiating the torsion Equation 10 and 
substituting Equation 19 yields: 

�9 :.:d20 (~-e) 2 ,h,-- 5 - 0 (20) 

where 
B: 

Q = ~6c(1 + ~) Z/4B~j (21) 

A solution with O(a) imposed and incorporating 
the finite-length boundary condition: 

dO 
- 0 a ty  = L (no transmitted moment) 

dy (22) 
is 

cosh [Q(L -- y)/Bc] 
o(v) = O(a) (23) 

cosh [Q(L -- a)/Bc] 

Thus, Equation 11 becomes 

1 
S = -- coth [ Q ( L -  a)/Be] (24) 

Q 

This appears to constitute the sought-for 
prediction of S once the factor c in Equation 21, 
which must bear the burden of our various noted 
assumptions, has somehow been estimated. A 
method for doing so emerges if it is noted that the 
load-point compliance of each beam support: 

v 
Co -= 

P 

D 2 0(a) 
- ( 25 )  

2 M 
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Figure 8 Measured against predicted beam support com- 
pliance, from DT tests on PMMA (see Fig. 4 for key). 

is predicted to be, via Equation 10, 11 and 24: 

l 
where 

C* - EBe ZHBa j (27) 

For a sufficiently deep support, the hyperbolic 
finite-length correction is unity, and c can be 
estimated by plotting Co (as extrapolated from 
the C(a) characteristic for each specimen at 
moderate crack lengths) against C*/c 1/2. 

3.2. Comparison with experimental results 
Using data from the series of variable-geometry DT 
tests on PMMA, the modulus was calculated using 
an expression 

E = E17) ~176 (28) 

inferred from Equation 4 by plotting (dC/da), as 
measured, against the geometric term. The constant 
E 1 w a s  evaluated by three-point bending tests on 
DT specimen halves using corresponding centre dis- 
placement rates: E 1  = 2.7 GPa, at 7) = 1 mm min -1 . 
Z was calculated using an interpolation polynomial: 

Z = 3 0.24 + 0.13 (29) 

to express the values tabulated in [5]. 
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Figure 9 Finite-length effects on crack shape factor and 
beam support compliance for various DT geometries. 

The resulting plot of Co against C~o (Fig. 8) 
shows c = 1.5 to be a reasonable approximation, 
although scatter and divergence from linearity 
are too great to support the proposed model as a 
complete picture of the beam-root  deformation 
system. Beyond such sources of scatter as un- 
certainties in the extrapolation of C(a) to Co, 
there are signals of more systematic effects. 
Shallow sidegrooves (lower Co values) imply c 
values of up to 3; although greater compliance 
would be expected from the lack of support on 
the crack path edge, this value is too great to be 
physically plausible. However, Fig. 9, which shows 
the finite-length effects on crack shape and root 
compliance to be expected for c = 1.5, seems to 
under-estimate those actually observed [3], again 
suggesting a higher c value than much of the data 
in Fig. 8 imply. 

Turning to the formal structure of the shape 
factor prediction using Equations 21 and 24 
provides more encouragement (Fig. 10). In the 
region of greatest practical interest ( S <  4), the 
S data from variable sidegroove and thickness tests 
on Perspex (Fig. 10a) differ from those predicted 
only by a constant factor. Beyond this region, S 
tends to exceed the predicted value, but it is under 
these circumstances that the appearance of isolated 
crack initiation points ahead of the crack tip on 
the tension surface, and a general associated 
raggedness of the crack front, subvert any shape 
prediction. Measured S data for the other materials 
tested (Fig. 10b) show a looser overall correlation, 
suggesting some material dependence of the 
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Figure 10 Crack shape factor as measured against that  predicted f rom specimen geometry  only: (a) PMMA, )l~r n = 
345 000 (see Fig. 4 for key), (b) other  materials. 

unexplained scale factor relating predicted and 
observed shape factors. 

It must now be pointed out that tractions 
binding the crack plane faces together, which have 
been accounted for in this analysis only ahead of 
the tip, will inevitably exert a significant moment 
behind the tip as well. Pursuit of this idea through 
to a complete analysis of the crack shape, again 
assuming a constant crack tip face separation, 8~, 
is relatively straightforward, but leads only to a 
point at which 6r must be evaluated, defeating the 
intention to provide an S prediction useful to the 
materials technologist. For such purposes, as 
illustrated in Section 2, an adequate estimate is 
given by: 

S = 0.35Q' coth [(L -- a)/Q'Bc] (30) 
where 

Q' = 2 zr(1 + v)Bj (31) 

Clearly, in order to minimize S, it is better to 
avoid thin materials, and to cut sidegrooves as 
shallow as possible - if at all. 

The ever-increasing accessibility of cheap com- 
puting power must be taken into account when 
selecting a materials testing technique. So simple 
and convenient is the Double Torsion test as a 
method of fracture toughness tes t ing-  particularly 
for rate-sensitive mate r ia l s - tha t  the computing 
effort required to foresee and correct for crack 
shape effects is insignificant by comparison. Even 
if a direct evaluation of S is necessary to achieve 
the required accuracy with greater reliability than 

Equations 30 and 31 can predict, it is, in most 
materials, easily made. 

4. Conclusions 
1. G e against d data from Double Torsion tests 

should be corrected by a factor derived from a 
measurement of the crack front shape, in order 
to achieve an adequate approximation to the 
underlying material property. This is particularly 
important for the rate-dependent materials, 
typified here by PMMA. 

2. The crack front shape can be characterized 
by a single parameter, the shape factor S, which 
can be predicted, with an accuracy adequate for 
general purposes, from the specimen geometry only. 

3. For specimens of a given size, the shape 
factor and its effects can be minimized by avoiding 
the use of thin materials and by keeping side- 
grooves, if they are necessary, as shallow as possible. 
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